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Abstract. We study the phase behaviour and structure of model colloid–polymer mixtures. By
integrating out the degrees of freedom of the non-adsorbing ideal polymer coils, we derive a
formal expression for the effective one-component Hamiltonian of the colloids. Using the two-
body (Asakura–Oosawa pair potential) approximation to this effective Hamiltonian in computer
simulations, we determine the phase behaviour for size ratiosq = σp/σc = 0.1, 0.4, 0.6, and
0.8, whereσc andσp denote the diameters of the colloids and the polymer coils, respectively. For
largeq, we find both a fluid–solid and a stable fluid–fluid transition. However, the latter becomes
metastable with respect to a broad fluid–solid transition forq 6 0.4. For q = 0.1 there is a
metastable isostructural solid–solid transition which is likely to become stable for smaller values of
q. We compare the phase diagrams obtained from simulation with those of perturbation theory using
the same effective one-component Hamiltonian and with the results of the free-volume approach.
Although both theories capture the main features of the topologies of the phase diagrams, neither
provides an accurate description of the simulation results. Using simulation and the Percus–Yevick
approximation we determine the radial distribution functiong(r) and the structure factorS(k) of
the effective one-component system along the fluid–solid and fluid–fluid phase boundaries. At
state-points on the fluid–solid boundary corresponding to high colloid packing fractions (packing
fractions equal to or larger than that at the triple point), the value ofS(k) at its first maximum is
close to the value 2.85 given by the Hansen–Verlet freezing criterion. However, at lower colloid
packing fractions freezing occurs when the maximum value is much lower than 2.85. Close to the
critical point of the fluid–fluid transition we find Ornstein–Zernike behaviour and at very dilute
colloid concentrationsS(k) exhibits pronounced small-angle scattering which reflects the growth
of clusters of the colloids. We compare the phase behaviour of this model with that found in studies
of additive binary hard-sphere mixtures.

(Some figures in this article appear in colour in the electronic version; seewww.iop.org)

1. Introduction

In 1954, Asakura and Oosawa showed that when two large (colloidal) bodies are immersed in
a solvent consisting of smaller macromolecules, an effective attractive interaction is induced
between the two bodies due to an unbalanced osmotic pressure arising from depletion of the
macromolecules in the region between the bodies [1]. The range of this effective interaction is
equal to the size of the macromolecules and the strength of the attraction is proportional to the
osmotic pressure of these [1]. Independently, and more than twenty years later, Vrij showed
that attractive interactions are induced between the colloids in colloid–polymer mixtures due
to the presence of the non-adsorbing polymers [2]. Moreover, he demonstrated the existence of
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a spinodal instability in what is now termed the Asakura–Oosawa model. In this simple model
for the colloid–polymer mixture, the colloids are modelled as hard spheres with diameterσc,
whereas the polymer coils are treated as interpenetrating, non-interacting particles as regards
their mutual interactions. However, the polymers are excluded by a centre-of-mass distance
of (σc + σp)/2 from the colloids whereσp, the diameter of the polymer coil, is given by
σp = 2Rg with Rg the radius of gyration of the polymer. In the same paper, Vrij also
presented experimental evidence for fluid–fluid separation in a mixture of silica particles and
polystyrene [2]. A few years later, Gastet al [3] employed an effective-pairwise-potential
model based on the Asakura–Oosawa depletion potential to calculate the phase equilibria for
colloid–polymer mixtures. Using a standard liquid-state perturbation theory with the hard-
sphere system as a reference, they found that the addition of polymer broadens the fluid–solid
coexistence region enormously when the size of the polymer coils is small compared to that of
the colloids. In addition, for sufficiently large size ratiosq = σp/σc a stable fluid–fluid and a
three-phase coexistence of a colloidal gas, liquid, and solid were found. Phase diagrams with
similar topologies as functions ofq were found by Lekkerkerkeret alusing the so-called free-
volume approach [4]. The key quantity in this approach is the statistically averaged volume
that is available for the polymers at a given polymer fugacity. Using a low-density expansion
for the polymers and employing scaled-particle expressions for the volume that is available
in the hard-sphere system, the free energy is then obtained directly, since the polymers are
assumed ideal. Experimental studies of colloid–polymer mixtures corroborated the existence
of a stable fluid–fluid (gas–liquid) phase separation and also showed that this has a sensitive
dependence on the size ratio [5,6]. While it is now well accepted that the topology of the phase
diagram of colloid–polymer mixtures depends critically on the size of the polymer coils, or
equivalently on the range and strength of the effective attractive interactions induced by the
presence of the polymers, a full understanding of the systematics is still lacking.

There is less information on thestructure of these mixtures. As most theoretical
approaches are based on perturbation theories, taking the hard-sphere system as a reference,
little detailed structural information has been obtained. However, more experimental data are
becoming available on the structure of these mixtures. Static colloid–colloid structure factors
S(k) were measured recently in the colloidal liquid phase at triple coexistence, for different
size ratios, using a novel application of two-colour dynamic light scattering [7]. There are
also recent neutron scattering determinations ofS(k) for a series of size ratios and polymer
concentrations [8]. The new experimental results [7] motivated Louiset al [9] to calculate
the three partial structure factors for the Asakura–Oosawa model using the Percus–Yevick
approximation. Although the authors claim that their theoretical results compare reasonably
well with those of the experiments, direct comparisons between the two sets of data are difficult
to make since the phase behaviour was not determined within the integral equation theory,
i.e. one does not know whether the theoretical results forS(k) correspond to state-points that
are close to the solid–fluid phase boundaries or, indeed, to three-phase coexistence†.

In this paper, we attempt a systematic investigation of the phase equilibria and the structure
of the Asakura–Oosawa model of colloid–polymer mixtures using computer simulation. Our
aims are to assess the reliability of the existing theories for the phase behaviour of this
model system and to examine the predictions for the colloid–colloid pairwise correlation
functions.

† Note that the state-point (ηc = 0.404, ηrp = 0.6) for size ratioq = 0.37 in figure 4 of reference [9] for the Asakura–
Oosawa pair potential is well inside the fluid–solid coexistence region obtained in our simulation (see figure 1(b),
later). If we compare the state-point (ηc = 0.404, ηp = 0.15) for the binary Asakura–Oosawa model considered in
the same figure with the phase diagram calculated from the free-volume approach [4], we find that this also lies well
inside the fluid–solid region.
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It is well known that direct simulation of the Asakura–Oosawa model, which is a highly
asymmetric non-additive binary mixture, is prohibited by slow equilibration, as huge numbers
of polymers are needed per colloid particle at the state-points of interest. Previous simulation
studies [10] represented the polymers by ideal particles on a lattice or by lattice chains. Another
way to circumvent this problem is to take advantage of the large size asymmetry by mapping
the binary mixture onto an effective one-component system. Recently, it was shown that an
effective one-component Hamiltonian for the large spheres can be derived for a binary hard-
sphere mixture by formally integrating out the degrees of freedom of the smaller spheres [11].
This effective Hamiltonian consists of zero-body, one-body, two-body, and higher-body terms.
The phase behaviour and pair correlation functions of the large spheres are then determined
by Monte Carlo simulations of an approximation to the effective Hamiltonian [11]. A similar
approach is applied here to the Asakura–Oosawa model. The zero- and one-body terms are
much simpler in this case and the two-body (pairwise-additive) term is precisely that given
by the Asakura–Oosawa pair potential. Moreover, for size ratiosq < 0.154, three-body and
higher-body terms are identically zero, so the mapping to the two-body approximation to
this effective Hamiltonian is exact in this regime. We perform Monte Carlo simulations for
the effective Hamiltonian truncated at the pairwise term, i.e. using the Asakura–Oosawa pair
potential, and we determine the phase behaviour and structure of the effective one-component
system for size ratiosq = 0.1, 0.4, 0.6, and 0.8.

The paper is organized as follows. In section 2, we describe the model and derive an
explicit expression for the effective one-component Hamiltonian by integrating out the degrees
of freedom of the polymer coils. In section 3, we present results of computer simulations
based on the approximate effective Hamiltonian. Phase diagrams and the pairwise correlation
functions are shown for each size ratio. In section 4 the phase diagrams are compared with
those from the perturbation theory treatment of this effective Hamiltonian and with those
from the free-volume approach. In section 5, we compare the phase diagrams calculated in
perturbation theory for the Asakura–Oosawa pair potential model, i.e. for the binary non-
additive hard-sphere mixture, with the corresponding ones for the additive binary hard-sphere
mixture. Although these share some common features there are significant differences in the
variation of the phase equilibria with size ratio. We conclude, in section 6, with a summary
and discussion of our results.

2. Model

We consider a suspension of sterically stabilized colloidal particles immersed together with
non-adsorbing polymers in an organic solvent. As the differences in length scales and time
scales between the solvent molecules and the colloids and polymers are huge, we can assume
the solvent to be an inert continuum, thereby ignoring the degrees of freedom of the individual
solvent molecules. Within this framework, effective potentials between the colloidal particles
and the polymers can be envisaged, and these are often assumed to be pairwise additive. The
interaction between two sterically stabilized colloidal particles in an organic solvent is close
to that between hard spheres, whereas dilute solutions of polymers in a theta-solvent can be
represented by non-interacting or ideal polymers. A simple idealized model for such a colloid–
polymer mixture is the so-called Asakura–Oosawa model. This is an extreme non-additive
binary hard-sphere model in which the colloids are treated as hard spheres with diameterσc
and the interpenetrable, non-interacting polymer coils are treated as point particles but which
are excluded from the colloids to a centre-of-mass distance of(σc + σp)/2. The diameter of
the polymer coil isσp = 2Rg with Rg the radius of gyration of the polymer. The pairwise
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potentials in this simple model are given by

φcc(Rij ) =
{
∞ for |Rij | < σc

0 otherwise

φcp(Ri − rj ) =
{
∞ for |Ri − rj | < 1

2(σc + σp)

0 otherwise

φpp(rij ) = 0.

(1)

HereRi andrj are the positions of the centres of the colloids and the polymer coils, respectively,
whileRij = Ri−Rj andrij = ri−rj . Most theoretical studies of colloid–polymer mixtures
are based on this Asakura–Oosawa model. However, even within the context of the model it
has been necessary to make approximations or assumptions in order to arrive at quantitative
predictions for the phase behaviour, and the calculated phase behaviour and structure appear
to be very sensitive to the precise details of the assumptions. In this paper, we take advantage
of the large size asymmetry, and integrate out the degrees of freedom of the (small) polymer
coils to obtain an effective Hamiltonian for the (large) colloids. Below, we describe briefly
how we map the binary mixture of colloids and polymers with interaction HamiltonianH

onto an effective one-component system with HamiltonianH eff . Our derivation follows that
in reference [11].

Thus, we considerNc colloids andNp ideal polymer coils with size ratioq in a macro-
scopic volumeV at temperatureT . The total Hamiltonian consists of (trivial) kinetic energy
contributions and a sum of interaction terms:

H = Hcc +Hcp +Hpp

where

Hcc =
Nc∑
i<j

φcc(Rij )

Hcp =
Nc∑
i=1

Np∑
j=1

φcp(Ri − rj ) (2)

Hpp =
Np∑
i<j

φpp(rij ) = 0.

It is convenient to consider the system in the(Nc, V , zp, T ) ensemble, in which the fugacity

zp = 3−3
p exp(βµp)

of the polymer coils is fixed. Hereµp denotes the chemical potential of the reservoir of
polymer coils andβ = 1/kBT . The thermodynamic potentialF(Nc, V, zp) of this system can
be written as

exp[−βF ] =
∞∑

Np=0

z
Np
p

Nc!3
3Nc
c Np!

∫
V

dRNc

∫
V

drNp exp[−β(Hcc +Hcp)]

= 1

Nc!3
3Nc
c

∫
V

dRNc exp[−βH eff ] (3)

whereH eff = Hcc + � is the effective Hamiltonian of the colloids, and3ν is the thermal
wavelength of speciesν. Here� is the grand potential of the fluid of ideal polymer coils in the
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external field of a fixed configuration ofNc colloids with coordinates{Ri}; i = 1, 2, . . . , Nc:

exp[−β�] =
∞∑

Np=0

z
Np
p

Np!

∫
V

drNp exp[−βHcp]

=
∞∑

Np=0

z
Np
p

Np!

(∫
V

drj exp

[
−

Nc∑
i=1

βφcp(Ri − rj )
])Np

= exp

[
zp

∫
V

drj exp

[
−

Nc∑
i=1

βφcp(Ri − rj )
]]
. (4)

Once�, and thusH eff , are known for all values ofzp, the thermodynamics and the phase
behaviour of the mixture can be determined. To this end, we expand� in terms of the Mayer
function

fij ≡ f (Ri , rj ) = exp[−βφcp(Ri − rj )] − 1

and find

−β� = zp
∫
V

drj
Nc∏
i=1

(1 +fij )

= zp
∫
V

drj +
Nc∑
i=1

zp

∫
V

drj fij +
∑ Nc∑

i<k

zp

∫
V

drj fij fkj

+
∑ Nc∑

i<k<l

∑
zp

∫
V

drj fij fkjflj + · · · . (5)

Using standard diagrammatic techniques [11,12], we can rewrite−β� in terms of diagrams:

−β� = s + g s + g sg@@ + g sg@@g + · · · (6)

where (i) each black circle represents a factorzp and an integral ofrj over the volumeV , and
(ii) each open big circle connected with a black circle represents anf -bond and a summation
over all different colloids at positionsRi for i = 1, . . . , Nc. The grand potential� can then be
classified according to the numbern = 0, 1, 2, . . . , Nc of colloids that interact simultaneously
with the ‘sea’ of ideal polymer, so

β� =
Nc∑
n=0

β�n.

We give explicit expressions forβ�n for n = 0, 1, and 2. Since the polymers are assumed to
be non-interacting, the expansion (6) is, of course, much simpler than the corresponding result
for binary hard-sphere mixtures [11] where extra classes of diagrams, containing small–small
Mayer bonds, appear.

The first diagram,−β�0, is equal tozpV and is the grand potential of a pure system
of ideal polymer at fugacityzp in a volumeV . For an ideal polymer,zp can be replaced
by βpr(zp) or by ρrp(zp), wherepr(zp) is the pressure andρrp(zp) is the density of the ideal
polymer in the corresponding reservoir. It follows directly from equation (5) that the second
diagram,−β�1, can be interpreted as−zpNc times the volume that is excluded for a polymer
coil by a single colloid. Thus, we find

−β�1 = −zpηc(1 +q)3V (7)
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whereηc = (π/6)σ 3
c Nc/V is the colloid packing fraction.�2 can be written as a sum of pair

potentials:

�2 =
Nc∑
i<j

φAO(Rij )

where we can show thatβz−1
p φAO(Rij ) is the difference in free volume of the polymers when

two colloids are separated by a finite distanceRij ≡ |Ri −Rj | and when they are separated
by infinite distance. The exact expression for the potential was derived by Asakura and
Oosawa [1]:

βφAO(Rij ) =



−πσ
3
pzp

6

(1 +q)3

q3

×
[

1− 3Rij
2(1 +q)σc

+
R3
ij

2(1 +q)3σ 3
c

]
for σc < Rij < σc + σp

0 forRij > σc + σp.

(8)

This Asakura–Oosawa pair potential describes an attractive potential well close to the surface
of the colloid, whose depth increases linearly with increasingzp. The range of the potential is
given byσp.

The higher-order�n correspond ton-body potentials. For size ratiosq < 0.154, three
or more non-overlapping colloids cannot simultaneously overlap with a small one [3], and
diagrams consisting of three or more open big circles are identically zero in equation (6). For
these small size ratios, the mapping of the two-component Asakura–Oosawa model onto the
effective one-component Hamiltonian based on pairwise additive Asakura–Oosawa potentials
is exact. More precisely, the effective one-component Hamiltonian

H eff = H0 +
Nc∑
i<j

φeff(Rij ) (9)

with effective pair potential

φeff(Rij ) = φcc(Rij ) + φAO(Rij )

and

βH0 ≡ β(�0 +�1) = −zp(1− ηc(1 +q)3)V

should generate thermodynamic properties and (equilibrium) correlation functions which are
identical to those from the original Asakura–Oosawa model of the binary fluid. Note that
sinceH0 is independent of the coordinates{Ri} of the colloids, this term does not influence
the colloid–colloid correlation functions; these are determined for a given polymer fugacity,
size ratio, and colloid density by the pair potentialφeff . Moreover, sinceH0/V is linear in the
colloid density, this term does not affect the phase equilibria, although it does contribute to the
pressure of the colloid–polymer mixture. This scenario is equivalent to that for the additive
hard-sphere mixture [11]. However, it is important to recognize that in the additive case the
corresponding pairwise effective Hamiltonian is not exact, as higher-body potentials, arising
from non-vanishing small–small interactions, persist even forq 6 0.154.

When the size ratioq > 0.154, three-body and certain higher-body terms will be non-zero.
More precisely, we expect an increasing number of higher-body terms to become non-zero
whenq increases. This can be made plausible by geometric arguments, since the number
of non-overlapping colloidal spheres that can simultaneously overlap with a polymer coil
increases whenq increases. In what follows we shall set�n = 0 for n > 3 and employ the
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effective Hamiltonian (9) for all values ofq. This is then equivalent to the approach adopted in
the pioneering study by Gastet al [3]. Their effective Hamiltonian is simply postulated to be
the second (pairwise) contribution in (9). As they did not perform a systematic integrating out
of the polymer degrees of freedom they do not obtainH0 or the higher-n (>2)-body potentials.
As q increases higher-body terms should play an increasingly important role.

3. Results of simulations using the effective Hamiltonian

3.1. Phase diagram

In order to determine the phase diagram of the effective one-component system, we first
calculate the thermodynamic potentialF , defined in equation (3) withHeff given by (9), as
a function ofNc, V , andzp. For convenience we usually replace the dependence onzp by
that on the reservoir packing fractionηrp. As the free energy cannot be measured directly in
a Monte Carlo simulation, we use thermodynamic integration to relate the free energy of the
effective system to that of a reference hard-sphere system at the same colloid packing fraction
ηc. To this end we introduce the auxiliary effective Hamiltonian

H eff
λ =

Nc∑
i<j

(φcc(Rij ) + λφAO(Rij )) (10)

where 06 λ 6 1 is a dimensionless coupling parameter: atλ = 0 the auxiliary Hamiltonian
is that of the pure system ofNc hard spheres, while atλ = 1 it is the effective Hamiltonian of
interest (for fixedzp andV ). It is a standard result [13–15] that

F(Nc, V, zp) = F(Nc, V, zp = 0) +
∫ 1

0
dλ

〈
Nc∑
i<j

φAO(Rij )

〉
Nc,V,zp,λ

(11)

whereF(Nc, V, zp = 0) is the free energy of the pure reference system of hard spheres (λ = 0),
for which we use the Carnahan–Starling expression [16] for the fluid, and the analytic form for
the equation of state proposed by Hall [17] for the solid phase. In the latter case an integration
constant is determined such that the simulation results for fluid–solid coexistence of the pure
hard-sphere system are recovered [18]. The angular brackets〈· · ·〉Nc,V,zp,λ denote a canonical
average over the system ofNc colloids interacting via the auxiliary HamiltonianH eff

λ . The
integrand in equation (11) can, for a fixedλ, be measured in a standard MC calculation; for
the numericalλ-integration we use a ten-point Gauss–Legendre quadrature [19].

In order to map out the phase diagram the free-energy densityf = F/V must be
determined fromλ-integrations for many state-points(ηc, zp). We chose therefore to simulate
relatively small systems, withNc = 108. We employ common-tangent constructions at fixed
zp to obtain the coexisting phases, i.e. we fitted polynomials tof and computed the pressure
and chemical potential at eachηc. The densities of the coexisting phases can then be determined
by equating the pressures and chemical potentials in both phases. For more details we refer
the reader to reference [11].

The above procedure has been carried out to determine the phase diagrams for size ratios
q = 0.1, 0.4, 0.6, and 0.8. In figure 1, we show the resulting phase diagrams in the (ηc, η

r
p)

plane. This representation, which is the natural one given our approach, implies that the tie
lines connecting coexisting state-points are horizontal. Atηrp = 0 our procedure ensures that
we recover the known freezing transition of the pure hard-sphere system for allq. We have not
calculated the actual polymer packing fractionηp in each of the coexisting phases of the binary
mixture so we have not determined the tie lines in the(ηc, ηp) plane.ηp can be obtained from
simulations of the effective Hamiltonian and we shall discuss this topic in a future publication.
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Figure 1. Phase diagrams of model colloid–polymer mixtures with size ratios (a)q = σp/σc = 0.1,
(b) q = 0.4, (c)q = 0.6, and (d)q = 0.8 as functions of the colloid packing fractionηc and the
ideal polymer coil reservoir packing fractionηrp as obtained from simulations of the effective one-
component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F + S, F + F, and
S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the metastable
solid–solid coexistence region. The asterisks denote state-points at which pairwise correlation
functions were calculated.

For q 6 0.4, an enormous widening of the fluid–solid transition is observed when
ηrp increases sufficiently. This implies that the coexisting fluid and solid phase become
progressively more dilute and dense, respectively, upon increasingηrp. This widening is
consistent with earlier findings by Gastet al [3] in perturbation theory studies of the same
pair potential model (see section 4.1). It has also been observed in experiments on colloid–
polymer mixtures [5, 6] and in simulations of hard spheres and lattice polymers [10]. The
shape of the coexistence curves implies that for small values ofq the fluid phase only persists
to very low values ofηc whenηrp is sufficiently high. The calculations also reveal the existence
of a fluid–fluid transition. However, forq = 0.1 and 0.4 we find this fluid–fluid coexistence
is metastable with respect to the broad fluid–solid transition. Forq > 0.6 the fluid–fluid
coexistence becomes stable. Assuming a linear dependence onq of the difference between the
polymer reservoir packing fraction at the triple point and at the critical point, we can estimate
that the liquid phase becomes metastable for size ratiosq 6 0.45. This value of the size ratio



Structure of model colloid–polymer mixtures 10087

is equal to the corresponding crossover value estimated from direct simulations of a lattice
version of the Asakura–Oosawa model, in which the polymer spheres are restricted to a cubic
lattice [10], but which make no other approximation. Thus the crossover value, where the
liquid state becomes ‘marginal’, appears not to be sensitive to the neglect of three-body and
higher-body terms. However, if we compare our phase diagrams with those of reference [10],
we find that for a givenq our critical point and triple point are both located at lower polymer
reservoir packing fractions and that the difference between the polymer reservoir packing
fractions at the critical point and at the triple point is severely underestimated.

For q = 0.1, the phase diagram exhibits an isostructural solid–solid transition, i.e.
coexistence between two face-centred-cubic (fcc) colloidal crystal phases. This solid–solid
coexistence region is found to be metastable with respect to the solid–fluid transition, although
the critical point of the solid–solid binodal is very close to the stable fluid–solid phase boundary.
Note that for small reservoir packing fractionsηrp, the effective pairwise (depletion) potential
of additive binary hard-sphere mixtures reduces to the Asakura–Oosawa pair potential. Thus
one expects very similar phase equilibria for the two types of mixture at small values of the
reservoir packing fraction. Since the phase boundaries of the additive hard-sphere mixture
shift to small reservoir packing fractions for small values ofq [11], the phase boundaries
for very asymmetric additive hard-sphere mixtures should resemble those of very asymmetric
non-additive colloid–polymer mixtures. Indeed, the location of the solid–solid transition in
our model colloid–polymer mixture forq = 0.1 is very close to its location in the phase
diagram of the additive hard-sphere mixture at the same size ratio [11]. For more extreme size
ratios the phase boundaries of the present effective one-component Hamiltonian should lie
even closer to those obtained from the effective Hamiltonian description of the additive binary
hard-sphere mixture. Thus forq = 0.05 and 0.033, the cases considered in reference [11],
the phase boundaries of the present model resemble closely those computed in [11]. As the
latter results show that the solid–solid coexistence becomes stable forq 6 0.05, it follows that
solid–solid coexistence should also be stable in the same range ofq for the present effective
Hamiltonian. This conclusion takes on more significance when we recall that forq < 0.154
the mapping to the effective one-component Hamiltonian (9) is exact. We may infer that the
full Asakura–Oosawa model of the colloid–polymer mixture will exhibit a stable solid–solid
transition forq 6 0.05.

3.2. Colloid–colloid structure

In this subsection we turn our attention to the structure of the model colloid–polymer mixtures.
Given that we determined the phase diagrams in subsection 3.1, we can now calculate the
colloid–colloid radial distribution functiong(r) and the structure factorS(k) in the fluid phase
but close to the phase boundaries. We performed simulations withNc = 1000 colloids,
interacting with the same effective pair potential that we used to calculate the phase diagrams.
The structure factorS(k) was calculated directly, using

S(k) = N−1
c 〈ρ(k)ρ(−k)〉 whereρ(k) =

Nc∑
i=1

exp(ik ·Ri ).

In figures 2–8, we showg(r) andS(k) for four size ratios at the state-points denoted by the
asterisks in figure 1. The packing fractions of the state-points are given in table 1.

We also calculated the structure factor and radial distribution function for the effective
one-component system using the Percus–Yevick (PY) closure, which is expected to be accurate
for short-ranged pair potentials of the type that we consider here [12]. These results are plotted
in the same figures as the simulation results. The overall level of agreement between the PY
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Figure 2. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.4 at
the two different state-points A and B, denoted by the asterisks in figure 1(b) and given in table 1.
The solid lines are the PY results and the open circles are those obtained from simulations.

results and those of simulation is remarkably good. The only significant differences are at the
first maximum ofS(k) (near 2π/σc), where PY approximation appears to underestimate the
height slightly for certain state-points.

For each value ofq the state-point A is atηc ' 0.48 andηrp = 0.20. In each case the
effective pair potential is relatively shallow and its range is not very short. Thus we expect
to findg(r) andS(k) which are similar to those of the hard-sphere fluid close to freezing and
this is what is observed. The attraction has little effect at this large colloid packing fraction.
State-point B corresponds to the triple point forq = 0.6 and 0.8.ηc remains large but the
polymer reservoir packing fractionηrp is also large, so the effect of attraction is greater than at
points A. This leads to somewhat larger values ofg(σc) and to substantially larger values of
S(k) at smallk than for hard spheres. Point B forq = 0.4 is not a triple point. We shall return
to the results for state-points B in section 6 when we make comparison with experiments.
State-point C is close to the fluid–fluid critical point forq = 0.6 and 0.8 and lies slightly below
the metastable critical point forq = 0.4. In all three casesS(k) exhibits a steep rise ask→ 0,
characteristic of Ornstein–Zernike behaviour. The small-angle scattering appears to be just
as pronounced forq = 0.4, for which the point C is separated from the metastable critical
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Figure 3. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.4 at
the two different state-points C and D, denoted by the asterisks in figure 1(b) and given in table 1.
The solid lines are the PY results and the open circles are those obtained from simulations.

point by the solid–fluid boundary, as forq = 0.6 and 0.8, where the critical points are stable.
The situation is very different forq = 0.1. Here state-point C lies close to the solid–fluid
boundary but is far removed from the metastable critical point. Figure 8 shows that there is no
increase inS(k) at smallk for this state. It is important to note that the PY results capture the
Ornstein–Zernike behaviour, when it occurs, as well as all the other features inS(k) andg(r).
This suggests that the PY approximation should yield critical points in the neighbourhood of
those found in simulation.

State-points D correspond to very dilute colloid packing, i.e.ηc = 0.02. They lie on the
‘gas’ side of the fluid–fluid coexistence curve forq = 0.6 and 0.8, and, forq = 0.4, point D
is very close to the fluid–solid phase boundary. The pair potential is strongly attractive since
ηrp is 0.6 or 0.5. As the colloid density is very low the maxima inS(k) are much reduced
in comparison to other state-points. The pronounced increase inS(k) at smallk is found for
similar low-density states of the rare-gas fluids Ar, Kr etc [20]. It reflects the fact that the
compressibility is large, due to the influence of attractive interactions, giving rise toS(0) > 1.
The contact valuesg(σc) are also large, and they increase with decreasing size ratio. This
trend can be attributed to the fact that the well depth−φAO(σc) increases asq decreases and
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Figure 4. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.6 at
the two different state-points A and B, denoted by the asterisks in figure 1(c) and given in table 1.
The solid lines are the PY results and the open circles are those obtained from simulations.

thatg(r) ∼ exp(−βφeff(r)) for these low densities. Note thatg(r) decays to a value close to
unity over the range(σp) of φeff(r), i.e. the clustering of the colloids is confined to this range.

The structure factors forq = 0.4 reinforce the observation made in earlier work [11]
that the Hansen–Verlet [13] freezing criterion is not universally applicable. Points D and C
lie close to the fluid–solid phase boundary but the heights of the first maximumS(km) are
1.06 and 1.6, respectively. These values are far below the value 2.85 required by the one-
phase freezing criterion. The latter is somewhat more reliable for points B and A. But there
the colloid packing fractionηc > 0.43, so one expects to have fairly large values ofS(km).
For q = 0.6 and 0.8 freezing occurs for high values ofηc and the criterion appears to be
obeyed.

Recently Vliegenthartet al [21] have performed computer simulations of the phase
behaviour and structure factor of models with Lennard-Jones 2n − n pairwise potentials.
Forn > 11 the potential is sufficiently short ranged that the fluid–fluid coexistence becomes
metastable with respect to fluid–solid, i.e. the critical temperature lies below the fluid–solid
phase boundary. Several of the features that they find in their structure factors are similar to
those that we obtain here.
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Figure 5. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the eff-
ective one-component system, based on the Asakura–Oosawa pair potential (8), with size ratio
q = 0.6 at the two different state-points C and D, denoted by the asterisks in figure 1(c) and
given in table 1. The solid lines are the PY results and the open circles are those obtained from
simulations.

4. Results of approximate theories

In this section we focus on approximate theories of the phase equilibria of colloid–polymer
mixtures. Given that we adopted the effective one-component Hamiltonian (9) we can employ
standard techniques, e.g. integral equation or perturbative methods. We have already seen from
section 3.2 that the PY integral equation theory yields a very good account of the colloid–colloid
correlations. However, such theories do not lend themselves so readily to investigations of the
phase equilibria; issues of thermodynamic self-consistency become important.

Here we consider first a simpler approach—namely thermodynamic perturbation theory,
pioneered by Gastet al [3] for the present model.

The second approach is the free-volume theory of Lekkerkerkeret al [4].
As the performance of these theories had not been fully assessed, either in relation to

each other or to the results of simulation, we calculate the phase behaviour predicted by both
theories for size ratiosq = 0.1, 0.4, 0.6, and 0.8 and compare with the results of the previous
section.
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Figure 6. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.8 at
the two different state-points A and B, denoted by the asterisks in figure 1(d) and given in table 1.
The solid lines are the PY results and the open circles are those obtained from simulations.

4.1. Perturbation theory

The simplest form of perturbation theory is the so-called high-temperature expansion, which
to first order inβ gives the Helmholtz free energy of the perturbed system as [12]

βF

N
= βF0

N
+

1

2
βρ

∫
dr g0(r)w(r) (12)

whereF0 and g0(r) are the free energy and radial distribution function of the reference
system,ρ ≡ N/V , andw(r) is the perturbing potential. The second-order terms in the high-
temperature expansion involve three- and four-body distribution functions of the reference
system, which are in general unknown. However, Barker and Henderson [22] have derived an
alternative formulation of the second-order term which involves only two-body correlations
and which is much more convenient for practical calculations. When the Barker–Henderson
second-order term is included, the free energy is given by

βF

N
= βF0

N
+

1

2
βρ

∫
dr g0(r)w(r)−

(
∂ρ

∂p

)
0

1

4
βρ

∫
dr g0(r)w

2(r). (13)
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Figure 7. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.8 at
the two different state-points C and D, denoted by the asterisks in figure 1(d) and given in table 1.
The solid lines are the PY results and the open circles are those obtained from simulations.

The second-order term is proportional to the compressibility of the reference system and this
result is often referred to as the macroscopic compressibility approximation.

The most natural way to calculate the thermodynamic properties of the present system with
pairwise potentialφeff is to treatφAO as a perturbation and take hard spheres as the reference
system. The first such study was due to Gastet al [3] who calculated phase diagrams for a
selection of size ratios using the second-order expression (13). In order to gain a more complete
picture we adopt the same approach and map out the phase diagrams forq = 0.1, 0.4, 0.6,
and 0.8. In each case the free energy is calculated from (13) and the coexisting densities are
determined by the common-tangent construction.

The reference hard-sphere free energies for the fluid and solid phases were provided by
the Carnahan–Starling [16] and Hall [17] expressions, respectively and the reference system
radial distribution functions used were those of Verlet and Weis [23] for the fluid phase and
Kincaid and Weis [24] for the solid. The calculated phase diagrams are given in figure 9 and
comparison with the simulation results of figure 1 shows that this perturbation theory gives
good overall predictions for the fluid–solid transition, but gives a poor account of the fluid–fluid
transition for smallq. Forq = 0.6 andq = 0.8, where the effective pair potential is relatively
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Figure 8. The radial distribution functiong(r/σc) and the structure factorS(kσc) for the effective
one-component system, based on the Asakura–Oosawa pair potential (8), with size ratioq = 0.1
at state-point C denoted by the asterisk in figure 1(a) and given in table 1. The solid lines are the
PY results and the open circles are those obtained from simulations.

Table 1. The state-points at which the colloid–colloid structure factors and radial distribution
functions were determined in terms of the packing fractionηc of the colloids and the packing
fractionηrp of polymer coils in the reservoir. These state-points are denoted by asterisks in figure 1.

State-point ηc ηrp

q = 0.1

C 0.250 0.160

q = 0.4

A 0.475 0.200
B 0.425 0.400
C 0.240 0.440
D 0.02 0.500

q = 0.6

A 0.480 0.200
B 0.440 0.600
C 0.230 0.490
D 0.02 0.600

q = 0.8

A 0.480 0.200
B 0.470 0.730
C 0.210 0.485
D 0.02 0.600

long ranged, the phase diagram resembles that of a simple (e.g. Lennard-Jones) liquid, withηrs
playing the role of an inverse temperature. In both cases the triple points are in good agreement
with those of simulation, and the critical points are at the correct values ofηc but are too low
in ηrp. For q = 0.4 the triple and critical points lie close to one another, but the fluid–fluid
transition remains stable for this size ratio. In contrast to the simulation results, which show
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Figure 9. Phase diagrams of model colloid–polymer mixtures as obtained from perturbation theory
of the effective one-component Hamiltonian with size ratios (a)q = σp/σc = 0.1, (b) q = 0.4,
(c) q = 0.6, and (d)q = 0.8 as functions of the colloid packing fractionηc and the ideal polymer
coil reservoir packing fractionηrp . F and S denote the stable fluid and solid (fcc) phase. F + S,
F + F, and S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the
metastable solid–solid coexistence region.

that the fluid–fluid transition becomes metastable forq 6 0.45, the perturbation theory yields
a crossover value ofq ∼ 0.31. Forq = 0.1 the fluid–solid phase boundary becomes more
structured and the melting line flattens forηrp ∼ 0.08. An isostructural (FCC–FCC) solid–solid
transition is obtained, and, in agreement with the simulation results, this is weakly metastable
with respect to the fluid–solid transition. It should be noted that this solid–solid transition was
not identified in the original work of Gastet al [3]. Perturbation theory gives a good account
of the solid–fluid phase boundaries forq = 0.1. The only difference lies in the slope of the
freezing line at lowηrp; perturbation theory gives a positive slope whereas simulation yields a
negative slope. On the other hand, the perturbation theory fails to predict a realistic fluid–fluid
transition forq = 0.1. In particular, the critical point is shifted to unphysically high values of
ηc, a defect which is found to become even worse asq becomes smaller.

In order to determine the sensitivity of the results to details of the perturbation theory,
the effect of using different expressions for the hard sphereg0(r) was investigated. The two
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expressions used were the Percus–Yevick result and the more accurate empirical result of Verlet
and Weis. We find that while the fluid–solid transition is largely unaffected by the choice of
g0(r), the fluid–fluid phase boundary is quite sensitive. Using the Verlet–Weis expression
moves the critical point to lowerηrp-values, an effect which becomes more pronounced
at smallerq-values. The main difference between the Percus–Yevick and the Verlet–Weis
expressions is that the Percus–Yevick one underestimates the contact valueg0(σc). As φAO

is deepest at contact, any variation ing0(σc) is heavily weighted in the perturbation integrals
and so affects the phase behaviour accordingly. We also investigated the effect of omitting the
Barker–Henderson second-order term. We find that this alters the value of the free energy by
typically less than five per cent. The effect on the phase boundaries is found to be negligible for
the fluid–solid and small for the fluid–fluid transition. In other words, first-order perturbation
theory leads to essentially the same results as the second-order results given in figure 9.

4.2. Free-volume theory

A second, alternative approach to calculating the phase behaviour of colloid–polymer mixtures
was proposed by Lekkerkerkeret al [4]. While this can be viewed as a type of perturbation
expansion, its basis is very different from the approach described above. It does not work from
the outset with the effective Hamiltonian(9), i.e. the Asakura–Oosawa pair potential does not
appear explicitly. Rather than following the original presentation of the theory [4] we give
an alternative treatment which clarifies the status of the various approximations. Consider the
thermodynamic identity

βF(Nc, V, zp) = βF(Nc, V, zp = 0) +
∫ zp

0
dz′p

(
∂βF(Nc, V, z

′
p)

∂z′p

)
(14)

wherezp is, as usual, the polymer fugacity. The integrand can now be Taylor expanded about
zp = 0:

βF(Nc, V, zp) = βF(Nc, V, zp = 0) + zp

(
∂βF(Nc, V, zp)

∂zp

)
zp=0

+O(z2
p). (15)

The partial derivative can be obtained from equations (3) and (5) and is given by

−
(
∂βF(Nc, V, zp)

∂zp

)
zp=0

= Trc

(
exp[−βHcc]

∫
drj

Nc∏
i=1

(1 +fij )

)/
Trc exp[−βHcc]

(16)

where Trc is short for the integral
∫
V

dRNc over the coordinates of the colloidal particles. Due
to the form of the Mayer functionfij for the colloid–polymer interaction, equation (16) can be
interpreted as the average free volume available to a polymer coil in a system ofNc colloids
whenzp = 0. Equation (15) can be rewritten as

βF(Nc, V, zp) = βF(Nc, V, zp = 0)− zp〈Vfree〉zp=0 +O(z2
p). (17)

This derivation follows that of [11] where an identical expression is derived for the additive
binary hard-sphere mixture. As the polymer is ideal,zp can be replaced byβpr(zp), where
pr(zp) is the pressure of the reservoir. In contrast to the binary hard-sphere case [11], this
replacement is exact. The free-volume theory [4] retains only the first-order term, neglecting
termsO(z2

p) and higher. With this assumption, equation (17) can be written as the sum of two
terms:

F(Nc, V, zp) = F0(Nc, V )− pr(zp)αV (18)
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whereα ≡ 〈Vfree〉zp=0/V is the free-volume fraction of a test polymer in the colloidal system
with packing fractionηc. The first term is the Helmholtz free energyF0 of a pure hard-
sphere fluid at the givenηc, while the second can be interpreted as the grand potential of ideal
polymers free to occupy a volumeαV . All information about the interactions between colloid
and polymer is now contained in the variation ofα with ηc. As previously, the Carnahan–
Starling or Hall expressions are used forF0 in the fluid and solid phases, respectively. An
approximate expression forα can be obtained by use of scaled-particle results (see [4]) which
give

α = (1− ηc) exp(−Aγ − Bγ 2 − Cγ 3) (19)

whereγ = (ηc)/(1− ηc),A = 3q + 3q2 + q3, B = 9q2/2 + 3q3, andC = 3q3. The chemical
potentialµc and total osmotic pressure5 can now be found by differentiation:

µc =
(
∂F

∂Nc

)
V,zp

= µ0(ηc)− pr(zp)
(

dα

dηc

)
πσ 3

c /6 (20)

5 = −
(
∂F

∂V

)
Nc,zp

= p0(ηc) + pr(zp)

(
α − ηc

(
dα

dηc

))
(21)

whereµ0 andp0 are the chemical potential and pressure of the hard-sphere fluid. The volume
fractions of the colloidal particles in each of the coexisting phases,η1

c andη2
c , are obtained by

equatingµc and5 at fixedηrp.
In order to assess the performance of the free-volume theory, phase diagrams were calc-

ulated for the same size ratiosq = 0.1, 0.4, 0.6, and 0.8 as in our previous calculations. The
results are shown in figure 10. Forq = 0.4 the value ofηc at the critical point is in rather good
agreement with the previous perturbation theory result but the free-volume theory predicts the
fluid–fluid transition to be more strongly stable. Nevertheless we find that forq 6 0.32 the
fluid–fluid transition becomes metastable with respect to a broad fluid–solid transition. It is
surprising that the two theories should give similar results for theq-value at which metastability
first occurs, as they follow quite independent routes. However, neither theory agrees with the
simulation prediction of metastability atq 6 0.45. The solid–fluid ‘chimney’ forq = 0.4
does not exhibit the rapid broadening with increasingηrp that is seen in the simulation and
perturbation theory results. Forq = 0.1, the melting line does not flatten out as much as in
perturbation theory or simulation. On the other hand, the slope of the freezing line for smallηrp
is given correctly by the free-volume approach. In contrast with simulation and perturbation
theory, no solid–solid transition was found in the free-volume approach. However, we do
find a spinodal instability in the solid phase, but this instability is very broad and disappears
in the fluid phase. We were therefore not able to find a metastable solid–solid coexistence
using the common-tangent construction. The fluid–fluid transition again shifts to unphysically
high ηc but in an even more extreme way than in perturbation theory, with a critical point at
ηc ∼ 0.55. The comparisons forq = 0.1 have special importance as this is an example of a
mixture, withq 6 0.154, where the mapping to the effective one-component Hamiltonian is
exact. Thus our simulations should determine, to within statistical accuracy, the ‘exact’ phase
equilibria of the binary mixture. It is significant, therefore, that the free-volume theory fails to
capture quantitatively some of the features of the simulation results, i.e. the shape of the melting
line and the development of the solid–solid transition. Forq = 0.6 the free-volume theory
yields a fluid–fluid critical point quite close to that of simulation and perturbation theory. The
solid–fluid ‘chimney’ remains unbroadened, however, leading to a triple point atηrp ∼ 1.37
whereas the simulation value is at about 0.60. This trend is maintained forq = 0.8 where
the free-volume estimate ofηrp at the triple-point increases to∼3.21, while our simulation
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Figure 10. Phase diagrams of model colloid–polymer mixtures as obtained from the free-volume
approach with size ratios (a)q = σp/σc = 0.1, (b) q = 0.4, (c) q = 0.6, and (d)q = 0.8 as
functions of the colloid packing fractionηc and the ideal polymer coil reservoir packing fraction
ηrp . F and S denote the stable fluid and solid (fcc) phase. F + S and F + F denote, respectively, the
stable fluid–solid and the (meta)stable fluid–fluid coexistence region. Note the difference in scale
of ηrp for q = 0.6 and 0.8.

gives the value 0.73. Note that since the polymer is assumed ideal there is no constraint on
the values ofηrp within the model. It is, of course, more difficult to assess the accuracy of the
free-volume theory for large values ofq. In this regime three-body and higher-body potentials
will certainly play a role and these are not incorporated in the present simulations or in the
perturbation theory. Some many-body effects are incorporated into the free-volume approach
as the free volume, given by (16), does include the effects of higher-order interactions.

Returning to the failings of free-volume theory forq 6 0.154, we see that these must be
attributed to the neglect ofO(z2

p) and higher-order terms. We can rewrite the exact expression
(14) as

βF(Nc, V, zp) = βF(Nc, V, zp = 0)− V
∫ zp

0
dz′p α(z

′
p, ηc) (22)

whereα(zp, ηc) ≡ ηp(zp, ηc)/ηrp is the ratio of densities of the polymers in the binary mixture
to that in the reservoir, for given fugacityzp and packing fractionηc of the colloids. More
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precisely,ηp(zp, ηc) = 〈Np〉zpπσ 3
p/6V where〈Np〉zp denotes the average number of polymers

in the (Nc, V , zp) ensemble. Ifα(zp, ηc) is replaced by its low-density limitα(0, ηc) ≡ α,
we recover(18). In reality, however, the free-volume fraction is not independent ofzp; there
is no reason to expect the polymer packing fractionηp to increase linearly with the reservoir
fractionηrp at fixedηc. In the case of additive binary hard-sphere mixtures, simulation studies
showed [11] that significant deviations from linearity do occur forq = 0.10, even at small
values of the reservoir packing fraction, when the packing fraction of the big spheres becomes
substantial. Small changes inα(zp, ηc) can have a dramatic effect on the phase equilibria since
derivatives of this fraction with respect toηc determine the conditions for coexistence. It is
not obvious how to improve systematically upon the basic approximation which setsα(zp, ηc)

equal to its value atzp = 0.

5. Connection with additive binary hard-sphere mixtures

In this section we shift our attention to the additive binary hard-sphere mixture, which is
closely related to the Asakura–Oosawa model considered previously. Once more we adopt an
effective one-component Hamiltonian and calculate the phase equilibria using thermodynamic
perturbation theory as in section 4.1. The motivation for this investigation is firstly to determine
the accuracy of the perturbation theory by comparing the results with those of recent computer
simulations of the binary mixture [11] forq = 0.1 andq = 0.2, and secondly to compare
the evolution of the phase diagram asq is reduced with that of the Asakura–Oosawa model in
order to identify any common trends or significant differences.

5.1. Phase diagrams obtained from the depletion potential

The binary hard-sphere model consists of a mixture of large and small hard spheres with
diametersσ1 andσ2, respectively, and with size ratioq = σ2/σ1. For the additive case the pair
potential between species 1 and 2 is described by a diameterσ12 = (σ1 + σ2)/2. Theoretical
studies of the phase equilibria for smallq have been largely inconclusive, particularly with
regard to the existence of a fluid–fluid demixing transition. However, recent simulations [11]
have resolved this issue and shown that although a fluid–fluid transition does occur for small
q, this remains metastable with respect to a broad fluid–solid transition. The simulation
study also found stable solid–solid transitions at very small size ratios [11]. Here we adopt
the same strategy as in section 2 and in reference [11], i.e. we take advantage of the size
asymmetry of the problem and integrate out the degrees of freedom of the small spheres. The
resulting effective Hamiltonian consists of zero-body, one-body, two-body, and many-body
terms. As in reference [11] we retain only the two-body contribution and neglect all higher-
body interactions. The pair potential can, once again, be identified with the depletion potential
between two large spheres in a sea of small particles. In the present case the depletion potential
is more complicated than that for ideal small particles, where it is simply the Asakura–Oosawa
potential (8), and there are no exact results available for arbitraryq and ηr2. We use an
approximation given by G̈otzelmannet al, which provides an excellent fit to simulation results
for the depletion potential for two hard spheres in a sea of small hard spheres forq = 0.1 and
reservoir packing fractionsηr2 as large as 0.34 [25]. The same potential was employed in [11]
as it has a simple (polynomial) form:

βφdep(Rij ) = −1 +q

2q
(3x2ηr2 + (9x + 12x2)(ηr2)

2

+ (36x + 30x2)(ηr2)
3) for − 1< x < 0 (23)
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where

x = Rij/σ2 − 1/q − 1.

Contact corresponds toRij = σ1 or x = −1. The total effective pair potential is
φeff = φ11+φdep, whereφ11 is the hard-sphere potential between two large spheres. Examples
of φdep and comparisons withφAO are given in figures 11 and 12. For simplicity we set
φdep = 0 for Rij > σ1 + σ2, i.e. it has the same range asφAO. In reality the (hard-sphere)
depletion potential exhibits exponentially damped oscillations asRij → ∞ [26] but these
should not be important for the phase behaviour. The key difference betweenφdep andφAO is
the development in the former of a repulsive barrier, whose height increases with increasing
ηr2. Note that to first order inηr2, equation (23) reduces to the Asakura–Oosawa potential
(8) evaluated in the so-called Derjaguin approximation (valid forq → 0) [25]. It should
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Figure 11. Phase diagrams of additive binary hard-sphere mixtures with size ratios (a)q =
σ2/σ1 = 0.1, and (b)q = 0.2, as functions of the large-sphere packing fractionη1 and the
small-sphere reservoir packing fractionηr2 as obtained from the perturbation theory of the effective
one-component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F+S, F+F, and
S + S denote, respectively, the stable fluid–solid, the (meta)stable fluid–fluid, and the metastable
solid–solid coexistence region. The effective pair potentials for the additive binary hard-sphere
mixture (dashed lines) and the Asakura–Oosawa pair potential (solid lines) for the colloid–polymer
mixture are shown together on the right-hand side forηr2 = 0.1 (faint) and 0.3 (bold).
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Figure 12. Phase diagrams of additive binary hard-sphere mixtures with size ratios (a)q =
σ2/σ1 = 0.4, and (b)q = 0.6, as functions of the large-sphere packing fractionη1 and the
small-sphere reservoir packing fractionηr2 as obtained from the perturbation theory of the effective
one-component Hamiltonian. F and S denote the stable fluid and solid (fcc) phase. F + S and
F + F denote, respectively, the stable fluid–solid and the metastable fluid–fluid coexistence region.
The effective pair potentials for the additive binary hard-sphere mixture (dashed lines) and the
Asakura–Oosawa pair potential (solid lines) for the colloid–polymer mixture are shown together
on the right-hand side forηr2 = 0.2 (faint) and 0.4 (bold).

be emphasized once more that in this additive case there is noexactmapping between the
partition functions of the full binary system and the effective one-component system, even
for q 6 0.154, because the interactions between the small spheres can still mediate many-
body forces. Nevertheless, comparison with the results of direct simulations of the true binary
hard-sphere mixture showed that the effective (two-body) Hamiltonian provides an accurate
description of the fluid–solid phase boundary for size ratiosq = 0.2, 0.1, and 0.05 and of
the solid–solid boundary forq = 0.1 and 0.05 [11]. This implies that the higher-body terms,
omitted in the effective-pairwise-depletion approximation, do not play an important role for
the additive hard-sphere case.

In order to calculate the phase behaviour we adopt the second-order perturbation theory
used in section 4, treating the pair potential (23) as the perturbation with hard spheres as the
reference. The calculated phase diagrams are shown in figures 11 and 12 as functions of the



10102 M Dijkstra et al

large-sphere packing fractionη1 and the small-sphere reservoir packing fractionηr2†. Our
results forq = 0.1 andq = 0.2 can be compared directly with the simulation results of
reference [11]. We find that the perturbation theory provides a good overall account of the
solid–fluid transition. As was the case for the Asakura–Oosawa potential, the only noticeable
difference lies in the slope of the freezing line at lowηr2; whereas perturbation theory indicates
that this is positive, the simulations suggest that it is negative. Perturbation theory yields a
metastable solid–solid transition forq = 0.1 similar to that found in simulation. The critical
point of this transition continues to lie very close to the fluid–solid phase boundary asq is
reduced to below 0.1, and the transition may even become stable for sufficiently smallq-values,
again in agreement with the simulation [11]. As was the case for the model colloid–polymer
mixture, perturbation theory gives a very poor account of the (metastable) fluid–fluid transition.
Forq = 0.1 this occurs at unphysically large values ofη1; the critical point is nearη1 = 0.6,
whereas simulation givesη1 ∼ 0.25 [11]. Whenq increases to 0.2 the metastable fluid–
fluid critical point shifts to a slightly lower valueη1 ' 0.56 and a reservoir packing fraction
ηr2 ' 0.31. In simulation, however, there is no indication of the fluid–fluid transition for this
particular size ratio; it has shifted to very high (unphysical) values ofηr2 [11]. Simulation
results are not available forq = 0.4 and 0.6 but we note that forq = 1 there is no fluid–
fluid transition. Asq is increased, the fluid–fluid critical point moves to lowerη1 but to only
slightly higherηr2. Indeed the fluid–fluid transition is predicted to be only weakly metastable
for q = 0.6 but we believe that this is an artifact of the perturbation theory. In reality the
transition should have already disappeared atq = 0.2.

5.2. Comparison with results of the Asakura–Oosawa model

The phase diagrams shown in figures 11 and 12 can be compared with those from simulation
(figure 1) and from perturbation theory (figure 9) for the Asakura–Oosawa effective pair
potential. Comparison with the latter is more straightforward as both sets of results are
obtained from the same theoretical framework. For each value ofq the phase diagrams in
figures 11 and 12 are accompanied by a plot of the corresponding Götzelmann and Asakura–
Oosawa effective pair potentials, each given at two different values ofηr2. For small values
of ηr2 the two potentials are very similar, but asηr2 increases the repulsive barrier develops
in the G̈otzelmann potential and the well depth is deeper than that of the Asakura–Oosawa
potential. The phase diagrams forq = 0.1 show striking similarities. The fluid–solid and
solid–solid phase boundaries of the two models are very close. As mentioned in section 3, the
main reason for this is that forq = 0.1 most of the interesting phase behaviour occurs at low
values ofηr2 and in this region the two depletion potentials are quite similar. The solid–solid
critical point lies slightly lower inηr2 for the G̈otzelmann potential which is a result of the
less attractive tail, as the solid phaseg0(r) gives more weight to the tail of the potential in the
perturbation integrals. The broadening of the fluid–solid transition occurs marginally faster
with increasingηr2 for the G̈otzelmann potential than for the Asakura–Oosawa potential. This
reflects the greater well depth of the Götzelmann potential, as the fluid phaseg0(r) gives the
contact value of the potential more weight in the perturbation integrals and so initiates the
broadening at lowerηr2 than for the Asakura–Oosawa potential.

The fluid–fluid transition is very different in the two models as the depletion potentials
differ considerably for the relevant (high) values ofηr2. As q is increased the phase diagrams

† We note that E Velasco, G Navascués and L Mederos (private communication) have investigated the phase behaviour
of additive binary hard-sphere mixtures for smallq using the same G̈otzelmannet al effective pair potential. While
their perturbation theory approach differs from the present one in the treatment of the hard-sphere referenceg0(r) in
the solid, all of their phase boundaries are very close to those that we calculate forq = 0.1 and 0.2.
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from the two models take on very different appearances. For the Asakura–Oosawa case the
fluid–fluid transition becomes stable whereas for the additive binary hard-sphere mixture this
is not the case. Given the vast differences in shape between the two types of depletion potential
for largeηr2, it is not surprising that the two models exhibit very different trends in their phase
behaviour as a function ofq. The Asakura–Oosawa pair potential is attractive and becomes
longer ranged asq increases and this can stabilize the fluid–fluid transition. By contrast the
depletion potential for the hard-sphere mixture has only a short-ranged attractive contribution
before the repulsive barrier takes over, and such potentials are not conducive to a fluid–fluid
transition. That the latter occur at all, albeit as metastable transitions, is, as we mentioned
above, an artifact of the perturbation theory.

6. Discussion

In this paper we studyboth the phase behaviour and the pair correlation functions for the
Asakura–Oosawa model of colloid–polymer mixtures. As direct simulation of the Asakura–
Oosawa model is prohibited by slow equilibration we derived an explicit effective one-
component Hamiltonian by integrating out the degrees of freedom of the polymer coils.
Using the two-body, i.e. the Asakura–Oosawa pair potential, approximation to this effective
Hamiltonian in computer simulations, we determined the phase behaviour for size ratios
q = 0.1, 0.4, 0.6, and 0.8. Forq > 0.6, we find a stable fluid–solid and a stable fluid–
fluid transition. The latter becomes metastable with respect to a broad fluid–solid transition
for q 6 0.4. For q = 0.1, we find an isostructural solid–solid transition, which is also
metastable with respect to the fluid–solid transition, but which is very likely to become stable
for smaller values ofq. To the best of our knowledge this is the first time such a solid–solid
transition has been reported for this model system.

We compare the phase diagrams obtained from simulation with those from a perturbation
theory treatment of the same one-component Hamiltonian. The topologies of the phase
diagrams as functions ofq are similar and the perturbation theory gives a reasonably good
overall account of the fluid–solid transition and the solid–solid transition. However, it gives
a poor account of the fluid–fluid transition for smallq. This failure of perturbation theory
to describe the fluid phase accurately at smallq warrants further investigation. It is clear
that the high-temperature approximation (13) underestimates the magnitude of the attractive
contribution to the free energyF for strongly attractive short-ranged perturbations of the type
encountered here. What is not so obvious is how to make improvements. In addition, the
crossover value where the liquid state becomes ‘marginal’ is estimated to be atq ∼ 0.45 in
the simulations, whereas the perturbation theory yields a crossover value ofq ∼ 0.31.

We also calculate the phase behaviour of the Asakura–Oosawa model within the free-
volume approach [4]. This approach incorporates some many-body effects but our simulations
are based on a two-body approximation to the effective Hamiltonian, so it is difficult to make
direct comparisons. However, we showed that forq 6 0.154 the mapping of the binary
Asakura–Oosawa model onto the effective one-component Hamiltonian based on pairwise
additive Asakura–Oosawa potentials is exact and thus wecan compare the phase diagrams
for q = 0.1. For this size ratio we find that the metastable fluid–fluid transition is shifted to
unphysically high colloid packing fractions in the free-volume approach and that the fluid–
solid transition is described slightly less well than in perturbation theory. Moreover, the
free-volume theory does not yield the solid–solid transition, although it does give a spinodal
instability in the solid phase. In order to assess the validity of the free-volume results at highq,
direct simulations of the binary Asakura–Oosawa model should be performed. However, this
will require new simulation techniques. This issue will be addressed in future work. Finally
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we made comparisons between the phase diagrams calculated for the Asakura–Oosawa pair
potential and those from the equivalent depletion potential treatment of the additive binary
hard-sphere mixture. Forq = 0.1 the fluid–solid and solid–solid phase boundaries are very
similar in both models, reflecting the similarity between the two effective potentials at low
values ofηr2. At higher values ofq the interesting features of the phase behaviour occur at
large values ofηr2 where the two effective potentials are very different, and this leads to the
absence of a fluid–fluid transition for the additive binary hard-sphere case.

We turn now to the possible relevance of our results for real mixtures. In experiments on
sterically stabilized polymethylmethacrylate (PMMA) particles and non-adsorbing polystyrene
in decalin, similar trends of the phase diagrams as functions ofq were found to those of the
present simulations [6]. However, the three-phase coexistence disappears, i.e. the liquid phase
becomes ‘marginal’, at a size ratio ofq 6 0.25 in these experiments [6]. A possible reason for
the discrepancy in the crossover value ofq might be the neglect of three-body and higher-body
terms in the simulations and in the perturbation theory. Note, however, that the free-volume
approach, which incorporates some many-body effects, predicts a crossover value ofq ∼ 0.32,
while direct simulations of a lattice model version of the Asakura–Oosawa model, which
restricts the polymer spheres to a cubic lattice, estimate the crossover atq ∼ 0.45 [10]. Another
possible reason for the discrepancy with experiments is the non-ideality or deformability of
the polymers. Direct simulations of colloids and ideal lattice polymers, which incorporate the
flexibility of the polymer coils, estimate the crossover atq 6 0.43, which is only slightly lower
than the value cited above for the Asakura–Oosawa model with polymer spheres restricted
to a cubic lattice [10]. Recently, depletion potentials have been calculated which include
effects of the anisotropy of ideal polymer chains [27]. These provide a better account of the
experimentally measured depletion potentials [27]. The polydispersity of the colloids and
polymers might also be relevant, and the effect of polydispersity on the depletion forces was
investigated in references [28] and [29]. How such modifications of the depletion potentials
might affect phase behaviour remains a subject for investigation.

The colloid–colloid radial distribution functiong(r) and the structure factorS(k) were
calculated for the fluid phase, but close to the phase boundaries, for the pairwise-additive
approximation to the effective Hamiltonian using both simulation and the PY integral equation
theory. We found very good agreement between the PY results and those of simulations.
Static colloid–colloid structure factors were measured recently for three colloidal liquids at
their triple points. The system was PMMA and polystyrene in decalin and the three size ratios
wereq = 0.57, 0.37, and 0.24 [7]. As the liquid becomes more marginal (lowerq), the height
of the main peak ofS(k) changes very little, i.e.S(km) ∼ 2.5± 0.2. This result is surprising
when we recognize that the colloid packing fraction for the liquid phase at the triple point
decreases significantly upon decreasingq; ηc = 0.333 forq = 0.24, which is the marginal
case. We might expect a lower value ofS(km) for a liquid with this value ofηc. In addition, a
substantial increase ofS(k) at lowk was found upon decreasingq. In figure 13, we plotS(k)
obtained from simulations for the liquid phase near the triple point (state-points B) for three
values ofq. Note that forq = 0.4 the liquid phase is not at the triple point. We find thatS(km),
the height of the first peak ofS(k), is slightly larger forq = 0.6 than forq = 0.8, which is
a little surprising given thatηc is 6 or 7% higher for the latter. However, this feature is not
found in the PY results—see figures 2, 4, and 6. Forq = 0.4 we find thatS(km) is reduced
by about 0.4, or so, below the peak height forq = 0.8 and thatS(0) is increased above the
values forq = 0.6 and 0.8. Such observations are consistent with the reduction in colloid
packing fraction;ηc = 0.42 for state-point B atq = 0.4. Thus, the trends that we find in the
simulation study are not as pronounced as those found in the experiments [7]. In particular, it
is difficult to see how a pair potential of the Asakura–Oosawa type could yieldS(km) ∼ 2.25
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Figure 13. The structure factorS(kσc) for the effective one-component system, based on the
Asakura–Oosawa pair potential (8), with size ratiosq = 0.8, 0.6, and 0.4. Each result refers to the
liquid phase near the triple point (state-points B given in table 1 and in figure 1).

for ηc = 0.333. Whether the full binary Asakura–Oosawa model would produce significantly
different colloid–colloid structure factors from those given here remains to be seen and this
topic will be addressed in future work.
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